EMBMS1217L

17 串集成低边驱动电池模拟前端芯片

Product datasheet, Rev1.0

Oct 15, 2024

1. 简介

EMBMS1217L 是一款高集成高精度锂电池监控和全方位安全保护的模拟前端芯片,且具有低边 NMOS 充放电管 驱动控制,适用于 10-17 串三元锂或磷酸铁锂等多种电池包应用。

该芯片可以独立完成周期性自动扫描测量每节电芯电压,每个外部温度,充放电流以及电池包的总电压,根据配置的保护阈值和延迟时间,完成相应的保护功能和自主释放,自主电芯均衡,以及电芯电压采集断线的自主检测和保护。

该芯片也可与外部单片机 MCU 融合应用,除了上述硬件本身自主提供的功能外,还可以有零伏禁充放保护以及充电截止功能。同时 MCU 还可以参与安全事件的释放,充电管的控制以及库仑计的管理。

2. 特性

■ 可扫描通道:

- 17路电芯电压;
- 可配置多达6路外部温度;
- 1路内部温度;
- 1路充放电电流:
- 2路高压模组电压;

■ 可单独使用,也可与MCU配合使用

■ 高精度测量

- 高精度电压 ADC 检测: 常温精度, ±5mV @2V~4.25V;
- 高精度电流 ADC 检测和库仑计算: 常温精度, ±20μV@±5mV; ±0.2%@±200mV;
- 电芯温度 ADC 检测: 精度,±1℃@-40℃~85℃;

■ 集成全面硬件保护

- 过充保护(OV)及二次过充保护(SOV);
- 过放保护(UV);
- 充电高温保护(OTC), 充电低温保护(UTC), 放电高温保护(OTD)及放电低温保护(UTD);
- 充放电管高温保护(MOT)(可配);
- 器件内部过热保护(OHT);
- 放电过流1和2以及短路保护(OCD1, OCD2 和 SCD);
- 充电过流1和2保护(OCC1 和 OCC2);
- 电芯连接断线检测及保护(CO);
- 支持二级保护 PF输出(驱动保险丝熔断);

■ 灵活的系统拓展性

- 内置电压电流同步测量功能;
- 内置硬件自主均衡和软件均衡;
- 内置电芯采集线断线检测功能;

- 集成3.3V/5V 20mA驱动LDO电源;
- 集成3.3V/5V 40mA 驱动LDO电源;
- 内置负载插拔及充电器插拔检测功能;
- 支持 0V 禁充放和充电截止(EOC)保护(可配);
- 支持低边充电管电压/放电管电压驱动;
- 内置低边预充电管电流/预放电管电压驱动;
- 支持可达 6 路外部温度测量(可配);
- ECTRL 管脚支持 PWM 控制放电管;
- 支持电子锁;
- 400kHz I²C 通信接口, CRC-8 校验;
- 内部事件中断输出;

■ 高可靠性设计

- 内置 LDO 输出电压测量和芯片工作电压测量提供系统自检;
- 内置 LDO 短路限流,过流保护和过温保护;
- 电芯采集管脚差分耐压±100V,支持100~10k滤波电阻;

■ 低功耗设计

- Full Power 模式: 130μA@25℃;
- Normal Sleep 模式: 60µA@25℃;
- Deep Sleep 模式: 10μA@25°C;
- Shut Down 模式: 1μA@25℃;

■ LQFP48 封装

3. 应用

- 广泛适用锰酸锂,磷酸铁锂等不同类型锂电池;
- 清洁电器,园林工具,两轮电动车,中小型储能等;

4. 订购信息

Table 1 订购信息

Type number	Package			
	Name	Description	Quantity	
EMBMS1217LPT	II()FP4X	LQFP package, 48 pins 7.00×7.00×1.40mm; e=0.50BSC	1500	

💸 EnergyMath

5. 系统框图

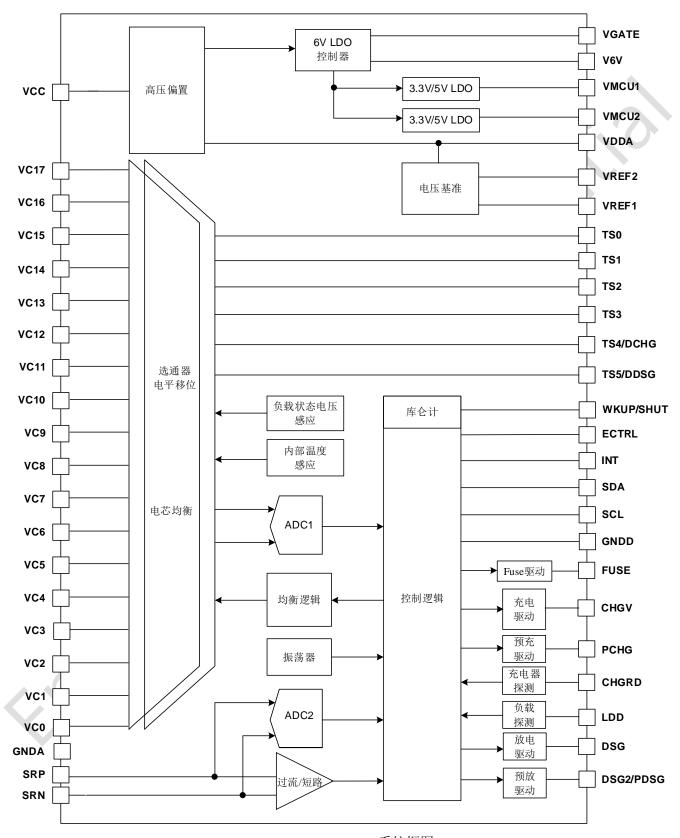


Fig 1. EMBMS1217L 系统框图

6. 管脚信息

6.1. 管脚图

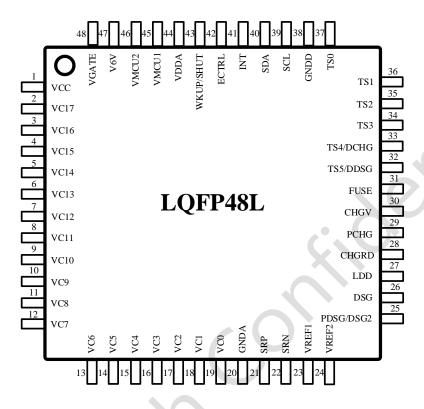


Fig 2. EMBMS1217L 管脚图

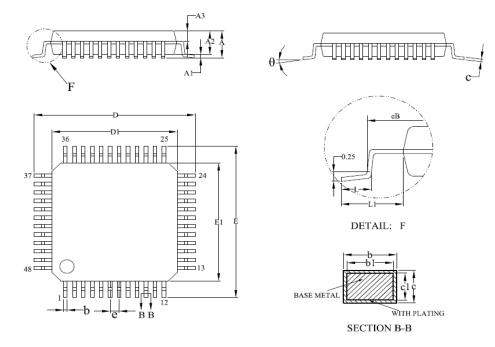
6.2. 管脚描述

Table 2 管脚描述

管脚号	管脚名	I/O	功能描述		
1	VCC	P	电源电压		
2	VC17	I	Cell17正连接端		
3	VC16	I	Cell16正连接端和Cell17负连接端		
4	VC15	I	Cell15正连接端和Cell16负连接端		
5	VC14	I	Cell14正连接端和Cell15负连接端		
6	VC13	I	Cell13正连接端和Cell14负连接端		
7	VC12	I	Cell12正连接端和Cell13负连接端		
8	VC11	I	Cell11正连接端和Cell12负连接端		
9	VC10	I	Cell10正连接端和Cell11负连接端		
10	VC9	I	Cell9正连接端和Cell10负连接端		
11	VC8	I	Cell8正连接端和Cell9负连接端		
12	VC7	I	Cell7正连接端和Cell8负连接端		
13	VC6	I	Cell6正连接端和Cell7负连接端		
14	VC5	I	Cell5正连接端和Cell6负连接端		

Table 2 管脚描述(继续)

	神田心 (地铁)				
管脚号	管脚名	I/0	功能描述		
15	VC4	I	Cell4正连接端和Cell5负连接端		
16	VC3	I	Cell3正连接端和Cell4负连接端		
17	VC2	I	Cell2正连接端和Cell3负连接端		
18	VC1	I	Cell1正连接端和Cell2负连接端		
19	VC0	I	Cell1负连接端		
20	GNDA	P	模拟地端		
21	SRP	I	差分电流采集端负极		
22	SRN	I	差分电流采集端正极		
23	VREF1	0	电压基准1输出端		
24	VREF2	0	电压基准2输出端		
25	PDSG/DSG2	0	预放电管驱动或可配置为第二路放电管驱动端		
26	DSG	0	放电管驱动端		
27	LDD	I	负载状态检测输入端		
28	CHGRD	I	充电器状态检测输入端		
29	PCHG	0	预充电管驱动端		
30	CHGV	0	充电管电压驱动或电流驱动端		
31	FUSE	0	二级保护状态输出驱动,可以烧FUSE,也可配置为关断外部第二个充电管		
32	TS5/DDSG	I/O	放电MOS控制逻辑电平输出,或可配置为外部TS5/AUX通道		
33	TS4/DCHG	I/O	充电MOS控制逻辑电平输出,或可配置为外部TS4/AUX通道		
34	TS3	I	外部温度检测端子3		
35	TS2	I	外部温度检测端子2		
36	TS1	I	外部温度检测端子1		
37	TS0	I	外部温度检测端子0		
38	GNDD	P	数字地		
39	SCL	I	I2C通讯接口SCL,可配置standalone应用		
40	SDA	I/O	I2C通讯接口SDA,当在standalone下,用作ELOCK		
41	INT	0	中断开漏输出		
42	ECTRL	I	放电管外部控制,允许PWM输入		
43	WKUP/SHUT	I	关机和唤醒输入端		
44	VDDA	0	5V LDO输出端,芯片工作电源		
45	VMCU1	O	5V/3.3V LDO输出端,供外围MCU使用		
46	VMCU2	O	5V/3.3V LDO输出端,供外围MCU使用		
47	V6V	I	6V 输入供电VMCU1和VMCU2		
48	VGATE	0	6V LDO功率MOS栅驱动端		


7. 封装信息

LQFP48L

Rev 1.0 - Oct 15, 2024 5

7.00×7.00×1.40 e=0.50BSC

	SYMBOL	MILLIMETER			
	STMBOL	MIN	NOM	MAX	
	A			1.60	
	A1	0.05	_	0.15	
	A2	1.35	1.40	1.45	
	A3	0.59	0.64	0.69	
	b	0.18		0.26	
	b1	0.17	0.20	0.23	
	С	0.13	_	0.17	
	c1	0.12	0.13	0.14	
	D	8.80	9.00	9.20	
	D1	6.90	7.00	7.10	
	Е	8.80	9.00	9.20	
	E1	6.90	7.00	7.10	
	eB	8.10	_	8.25	
	e	0.50BSC			
\triangle	L	0.45		0.75	
	L1	1.00REF			
	θ	0		プ	

Fig 3. 封装信息图

8. 应用说明

本数据手册重点给出基本性能参数以及功能描述,详细的寄存器操作在另一份用户手册中,如有进一步的需求,请联系芯祥科技(合肥)有限公司。