EMBMS1205

3~5 串集成低边驱动锂电池模拟前端芯片

Product datasheet, Rev1.0 Dec 15, 2024

1. 简介

EMBMS1205 是一款集成放电管和充电管的控制及驱动,灵活的高精度数据采集,过充和过放以及过流和短路的硬件侦测保护芯片,适用于3~5串三元锂或磷酸铁锂等多种电池包应用。

在电池管理系统应用中,该芯片须与外部单片机MCU配合使用,负责完成周期性地自动扫描测量每节电芯电压,外部温度,充放电流以及电池包的总电压,根据配置参数,完成相应的保护,而保护事件的释放由MCU完全负责,同时MCU还可以通过配置寄存器获得PWM放电控制保护功能,高低温保护功能以及额外的系统定义保护功能,完全由MCU自主完成,具有灵活的系统应用。

2. 特性

■ 低误差测量

- 低误差电芯电压ADC测量: 常温误差: ±6mV @2V~4.25V;
- 低误差电流ADC测量: 常温误差: ±50μV@±5mV; ±0.4%@±200mV;
- 电芯温度ADC测量:误差: ±1℃@-40℃~85℃;

■ 集成硬件功能

- 过充(OV)硬件侦测及保护;
- 过放(UV)硬件侦测及保护;
- 放电过流2(OCD2)和短路(SCD)硬件侦测及保护;
- 芯片内部过热保护(OHT);
- 内置均衡驱动,支持软件均衡;
- 内置电池采集断线侦测功能;
- 内置3.3V/5V可带载30mA LDO电源;
- ECTRL管脚支持PWM控制放电管;
- 400kHz I2C通信接口, CRC-8校验;
- WKUP管脚一键唤醒;
- 内部事件中断输出;
- 内置低边NMOS充电管电流源驱动;
- 内置低边NMOS放电管电压源驱动;

■ 高可靠性设计

- 内置LDO短路限流,过流保护和过温保护;
- 内置LDO输出电压测量和芯片工作电压测量提供系统自检;
- 电芯采集管脚差分耐压±45V,支持100~10k限流电阻;

Rev 1.0 - Dec 15, 2024

■ 低功耗设计

- Full Power模式: 70µA@25°C;
- Normal Sleep模式: 50µA@25°C;
- Deep Sleep模式: 4μA@25℃;
- Shutdown模式: 0.2μA@25℃;

■ SSOP20L 封装

3. 应用

- 广泛适用锰酸锂,钴酸锂,磷酸铁锂等不同类型锂电池
- 清洁电器包括洗(拖)地机,扫地机和吸尘器
- 小型储能;

4. 订购信息

Table 1 订购信息

	Package		
Type number	Name	Description	Quantity
EMBMS1205DBQ		SSOP package, 20 pins 8.65×3.90×1.40mm; e=0.635BSC	1500

Rev 1.0 – Dec 15, 2024

5. 系统框图

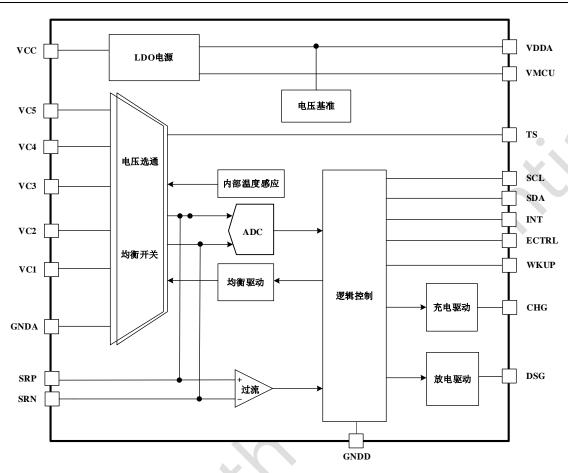


Fig 1. EMBMS1205 系统框图

Rev 1.0 – Dec 15, 2024

6. 管脚信息

6.1. 管脚图

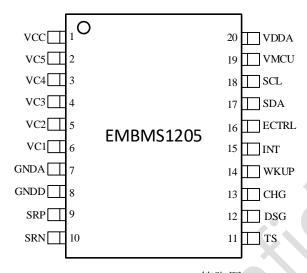


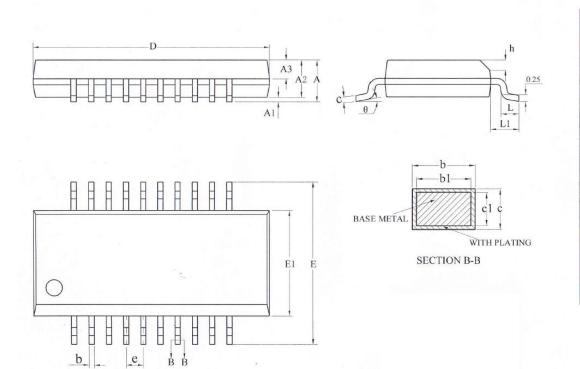
Fig 2. EMBMS1205 管脚图

6.2. 管脚描述

Table 2 管脚描述

管脚号	管脚名	I/O	功能描述
1	VCC	Р	电源电压
2	VC5	I	Cell5正连接端
3	VC4	I	Cell4正连接端和Cell5负连接端
4	VC3	I	Cell3正连接端和Cell4负连接端
5	VC2	I 1	Cell2正连接端和Cell3负连接端
6	VC1		Cell1正连接端和Cell2负连接端
7	GNDA	Р	模拟地端
8	GNDD	Р	数字地端
9	SRP		回路电流采集输入端
10	SRN	ı	回路电流采集输入端
11	TS) i	外部温度检测输入端
12	DSG	0	放电MOS栅极驱动端
13	CHG	0	充电MOS电流驱动端
14	WKUP	I	一键唤醒输入端
15	INT	0	中断输出端(open-drain)
16	ECTRL	I	放电管外部控制端,可配置PWM输入
17	SDA	I/O	I2C通讯接口数据端
18	SCL	I	I2C通讯接口时钟端
19	VMCU	0	5V/3.3V LDO输出端,可供电外部MCU
20	VDDA	0	5V LDO输出端,仅供芯片内部使用

Rev 1.0 – Dec 15, 2024



7. 封装信息

SSOP20L

8.65×3.90×1.40

e=0.635BSC

SYMBOL	MILLIMETER			
	MIN	NOM	MAX	
Α	_	_	1.75	
A1	0.10	0.15	0.25	
A2	1.30	1.40	1.50	
A3	0.60	0.65	0.70	
ь	0.23		0.31	
ы	0.22	0.25	0,28	
С	0.20	_	0.24	
c1	0.19	0.20	0.21	
D	8.55	8.65	8.75	
Е	5.80	6.00	6.20	
E1	3,80	3,90	4.00	
e	0.635BSC			
h	0.30	_	0.50	
L	0.50	_	0.80	
LI	1.05REF			
0	0		8°	

Fig 3. 封装信息图

8. 应用说明

本数据手册重点给出基本性能参数以及功能描述,详细的寄存器操作在另一份用户手册中,如有进一步的需求,请联系芯祥科技(合肥)有限公司。

Rev 1.0 – Dec 15, 2024 5